两正数x,y,满足x+y=1则(x+1/x)(y+1/y)的最小值
展开全部
(x+1/x)(y+1/y)=[(x^2+1)/x][(y^2+1)/y]
=(x^2+y^2+x^2*y^2+1)/xy
=x/y+y/x+xy+1/xy (xy+1/xy不能用均值定理)
=x/y+y/x+xy+(x+y)^2/xy
=2(x/y+y/x)+xy+2 (1=x+y≥2√xy),xy≤1/4,)
≥6+xy=6.25
此时x=y=1/2
方法2
(x+1/x)(y+1/y)=[(x^2+1)/x][(y^2+1)/y]
=(x^2+y^2+x^2*y^2+1)/xy
=[(x+y)^2-2xy+(xy)^2+1]/xy
=[2-2xy+(xy)^2]/xy=2/xy+xy-2.
设t=xy≤[(x+y)/2]^2=1/4.
f(t)=2/t+t在(0,√2)单减,在(√2,+∞)单增。f(t)=2/t+t在t=1/4时取得最小值。代入得最小为25/4
2)
解:因a>b>0.故a²>ab>0.
===>a²-ab>0,且ab>0.
由基本不等式可知;
a²+(1/ab)+[1/(a²-ab)]
={(a²-ab)+[1/(a²-ab)]}+[(ab)+1/(ab)]≥2+2=4。
等号仅当a²-ab=1,ab=1时取得;
即当a=√2,b=1/√2时取得。故原式min=4.
=(x^2+y^2+x^2*y^2+1)/xy
=x/y+y/x+xy+1/xy (xy+1/xy不能用均值定理)
=x/y+y/x+xy+(x+y)^2/xy
=2(x/y+y/x)+xy+2 (1=x+y≥2√xy),xy≤1/4,)
≥6+xy=6.25
此时x=y=1/2
方法2
(x+1/x)(y+1/y)=[(x^2+1)/x][(y^2+1)/y]
=(x^2+y^2+x^2*y^2+1)/xy
=[(x+y)^2-2xy+(xy)^2+1]/xy
=[2-2xy+(xy)^2]/xy=2/xy+xy-2.
设t=xy≤[(x+y)/2]^2=1/4.
f(t)=2/t+t在(0,√2)单减,在(√2,+∞)单增。f(t)=2/t+t在t=1/4时取得最小值。代入得最小为25/4
2)
解:因a>b>0.故a²>ab>0.
===>a²-ab>0,且ab>0.
由基本不等式可知;
a²+(1/ab)+[1/(a²-ab)]
={(a²-ab)+[1/(a²-ab)]}+[(ab)+1/(ab)]≥2+2=4。
等号仅当a²-ab=1,ab=1时取得;
即当a=√2,b=1/√2时取得。故原式min=4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |