定积分计算题,求解答过程,望诸大神帮给个解答,不胜感激!(其实就是同济第六版高数课本上的例题中的最
定积分计算题,求解答过程,望诸大神帮给个解答,不胜感激!(其实就是同济第六版高数课本上的例题中的最后一步计算)...
定积分计算题,求解答过程,望诸大神帮给个解答,不胜感激!(其实就是同济第六版高数课本上的例题中的最后一步计算)
展开
展开全部
就是用三角代换 令θ=tanα
定积分不好书写,给你一个不定积分的过程
令θ=tanα,则:√(1+θ^2)=√[1+(tanα)^2]=1/cosα, dθ=[1/(cosα)^2]dα。
sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(tanα)^2/[1+(tanα)^2}
=θ/√(1+θ^2),
∴原式=∫{(1/cosα)[1/(cosα)^2]}dα
=∫[cosα/(cosα)^4]dα
=∫{1/[1-(sinα)^2]^2}d(sinα)。
再令sinα=u,则:
原式=∫[1/(1-u^2)^2]du
=(1/4)∫[(1+u+1-u)^2/(1-u^2)^2]du
=(1/4)∫[(1+u)^2/(1-u^2)^2]du+(1/2)∫[(1-u^2)/(1-u^2)^2]du
+(1/4)∫[(1-u)^2/(1-u^2)^2]du
=(1/4)∫[1/(1-u)^2]du+(1/2)∫[1/(1-u^2)]du+(1/4)∫[1/(1+u)^2]du
=-(1/4)∫[1/(1-u)^2]d(1-u)+(1/4)∫[(1+u+1-u)/(1-u^2)]du
+(1/4)∫[1/(1+u)^2]d(1+u)
=(1/4)[1/(1-u)]-(1/4)[1/(1+u)]+(1/4)∫[1/(1-u)]du
+(1/4)∫[1/(1+u)]du
=(1/4)[1/(1-sinα)]-(1/4)[1/(1+sinα)]
-(1/4)∫[1/(1-u)]d(1-u)+(1/4)∫[1/(1+u)]d(1+u)
=(1/4){1/[1-θ/√(1+θ^2)]}-(1/4){1/[1+θ/√(1+θ^2)]}
-(1/4)ln|1-u|+(1/4)ln|1+u|+C
=(1/4)[1+θ/√(1+θ^2)-1+θ/√(1+θ^2)]/[1-θ^2/(1+θ^2)]
+(1/4)ln|1+sinα|-(1/4)ln|1-sinα|+C
=(1/4)[2θ/√(1+θ^2)]/[(1+θ^2-θ^2)/(1+θ^2)]
+(1/4)ln[|1+θ/√(1+θ^2)|/|1-θ/√(1+θ^2)|]+C
=(1/2)θ√(1+θ^2)+(1/4)ln|[√(1+θ^2)+θ]/[√(1+θ^2)-θ]|+C
=(1/2)θ√(1+θ^2)+(1/4)ln|[√(1+θ^2)+θ]^2/(1+θ^2-θ^2)|+C
=(1/2)θ√(1+θ^2)+(1/2)ln|θ+√(1+θ^2)|+C
定积分不好书写,给你一个不定积分的过程
令θ=tanα,则:√(1+θ^2)=√[1+(tanα)^2]=1/cosα, dθ=[1/(cosα)^2]dα。
sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(tanα)^2/[1+(tanα)^2}
=θ/√(1+θ^2),
∴原式=∫{(1/cosα)[1/(cosα)^2]}dα
=∫[cosα/(cosα)^4]dα
=∫{1/[1-(sinα)^2]^2}d(sinα)。
再令sinα=u,则:
原式=∫[1/(1-u^2)^2]du
=(1/4)∫[(1+u+1-u)^2/(1-u^2)^2]du
=(1/4)∫[(1+u)^2/(1-u^2)^2]du+(1/2)∫[(1-u^2)/(1-u^2)^2]du
+(1/4)∫[(1-u)^2/(1-u^2)^2]du
=(1/4)∫[1/(1-u)^2]du+(1/2)∫[1/(1-u^2)]du+(1/4)∫[1/(1+u)^2]du
=-(1/4)∫[1/(1-u)^2]d(1-u)+(1/4)∫[(1+u+1-u)/(1-u^2)]du
+(1/4)∫[1/(1+u)^2]d(1+u)
=(1/4)[1/(1-u)]-(1/4)[1/(1+u)]+(1/4)∫[1/(1-u)]du
+(1/4)∫[1/(1+u)]du
=(1/4)[1/(1-sinα)]-(1/4)[1/(1+sinα)]
-(1/4)∫[1/(1-u)]d(1-u)+(1/4)∫[1/(1+u)]d(1+u)
=(1/4){1/[1-θ/√(1+θ^2)]}-(1/4){1/[1+θ/√(1+θ^2)]}
-(1/4)ln|1-u|+(1/4)ln|1+u|+C
=(1/4)[1+θ/√(1+θ^2)-1+θ/√(1+θ^2)]/[1-θ^2/(1+θ^2)]
+(1/4)ln|1+sinα|-(1/4)ln|1-sinα|+C
=(1/4)[2θ/√(1+θ^2)]/[(1+θ^2-θ^2)/(1+θ^2)]
+(1/4)ln[|1+θ/√(1+θ^2)|/|1-θ/√(1+θ^2)|]+C
=(1/2)θ√(1+θ^2)+(1/4)ln|[√(1+θ^2)+θ]/[√(1+θ^2)-θ]|+C
=(1/2)θ√(1+θ^2)+(1/4)ln|[√(1+θ^2)+θ]^2/(1+θ^2-θ^2)|+C
=(1/2)θ√(1+θ^2)+(1/2)ln|θ+√(1+θ^2)|+C
追问
好难看清,要是有纸质的照个照片就好了,我正在看,之前我也做过这个代换就是还是没解出来
具体过程相当复杂呀,看来查积分表不失为好办法
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询