如图,在△ABC中,AB=AC,AD是角平分线,E为AD延长线上一点,CF∥BE交AD于点F,连接BF、CE.四边形BECF是

如图,在△ABC中,AB=AC,AD是角平分线,E为AD延长线上一点,CF∥BE交AD于点F,连接BF、CE.四边形BECF是菱形吗?请说明理由.... 如图,在△ABC中,AB=AC,AD是角平分线,E为AD延长线上一点,CF∥BE交AD于点F,连接BF、CE.四边形BECF是菱形吗?请说明理由. 展开
 我来答
手机用户04763
推荐于2018-04-09 · TA获得超过253个赞
知道答主
回答量:179
采纳率:83%
帮助的人:56万
展开全部
解答:证明:∵AB=AC,AD是角平分线,
∴BD=CD,
∵CF∥BE,
∴∠DBE=∠FCD,
在△CDF和△BDE中,
∠DBE=∠FCD
DB=CD
∠BDE=∠CDF

∴△BDE≌△CDF(ASA),
∴CF=BE,
又∵CF∥BE,
∴四边形BFCE是平行四边形;
∵AB=AC,D是BC的中点,
∴AD⊥BC,
又∵四边形BFCE是平行四边形,
∴四边形BFCE是菱形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式