(2014?哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G
(2014?哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H....
(2014?哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则AGFD的值为______.
展开
1个回答
展开全部
解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.
∵
=
=
=
=
,
∴BD=
CD.
如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.
在△ABD与△AMD中,
∴△ABD≌△AMD(SAS),
∴MD=BD=
CD.
过点M作MN∥AD,交EG于点N,交DE于点K.
∵MN∥AD,
∴
=
=
,
∴CK=
CD,
∴KD=
CD.
∴MD=KD,即△DMK为等腰三角形,
∴∠DMK=∠DKM.
由题意,易知△EDG为等腰三角形,且∠1=∠2;
∵MN∥AD,
∴∠3=∠4=∠1=∠2,
又∵∠DKM=∠3(对顶角)
∴∠DMK=∠4,
∴DM∥GN,
∴四边形DMNG为平行四边形,
∴MN=DG=2FD.
∵点H为AC中点,AC=4CM,
∴
=
.
∵MN∥AD,
∴
=
,即
=
,
∴
∵
BD |
CD |
S△ABD |
S△ACD |
| ||
|
AB |
AC |
5 |
4 |
∴BD=
5 |
4 |
如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.
在△ABD与△AMD中,
|
∴△ABD≌△AMD(SAS),
∴MD=BD=
5 |
4 |
过点M作MN∥AD,交EG于点N,交DE于点K.
∵MN∥AD,
∴
CK |
CD |
CM |
AC |
1 |
4 |
∴CK=
1 |
4 |
∴KD=
5 |
4 |
∴MD=KD,即△DMK为等腰三角形,
∴∠DMK=∠DKM.
由题意,易知△EDG为等腰三角形,且∠1=∠2;
∵MN∥AD,
∴∠3=∠4=∠1=∠2,
又∵∠DKM=∠3(对顶角)
∴∠DMK=∠4,
∴DM∥GN,
∴四边形DMNG为平行四边形,
∴MN=DG=2FD.
∵点H为AC中点,AC=4CM,
∴
AH |
MH |
2 |
3 |
∵MN∥AD,
∴
AG |
MN |
AH |
MH |
AG |
2FD |
2 |
3 |
∴
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载