设数列{an}的前n项和为Sn,且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),(1)若{an}是等差数列,求{an}的通项
设数列{an}的前n项和为Sn,且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),(1)若{an}是等差数列,求{an}的通项公式;(2)若a1=1,①当a2=...
设数列{an}的前n项和为Sn,且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),(1)若{an}是等差数列,求{an}的通项公式;(2)若a1=1,①当a2=1时,试求S100;②若数列{an}为递增数列,且S3k=225,试求满足条件的所有正整数k的值.
展开
1个回答
展开全部
(1)∵数列{an}是等差数列,
且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
∴a1+(2a1+d)+(3a1+3d)=3×22+2,①
(2a1+d)+(3a1+3d)+(4a1+6d)=3×32+2,②
联立①②,得:a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
(2)∵Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
∴Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+),
∴S100=a1+(a2+a3+a4)+(a5+a6+a7)+…+(a98+a99+a100)
=1+6×
(2+98)+3×33
=10000.
(3)设a2=x,由Sn-1+Sn+Sn+1=3n2+2,
得
,
∴
,
∴
,
又Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+,
an-1+an+an+1=6n-3,n≥3,n∈N+,
∴an+2-an-1=6,n≥3,n∈N+,
∴a4=x+6,
∵数列{an}为递增数列,
∴a1<a2<a3<a4<a5,解得
<x<
,
由S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a2k-2+a2k-1+a2k)
=12-x+
[6?4+3+6(3k?2)+3](k?1)
=9k2-x+3=225,
∴x-9k2-222∈(
,
),
解得k=5.
且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
∴a1+(2a1+d)+(3a1+3d)=3×22+2,①
(2a1+d)+(3a1+3d)+(4a1+6d)=3×32+2,②
联立①②,得:a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
(2)∵Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
∴Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+),
∴S100=a1+(a2+a3+a4)+(a5+a6+a7)+…+(a98+a99+a100)
=1+6×
33 |
2 |
=10000.
(3)设a2=x,由Sn-1+Sn+Sn+1=3n2+2,
得
|
∴
|
∴
|
又Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+,
an-1+an+an+1=6n-3,n≥3,n∈N+,
∴an+2-an-1=6,n≥3,n∈N+,
∴a4=x+6,
∵数列{an}为递增数列,
∴a1<a2<a3<a4<a5,解得
7 |
3 |
11 |
3 |
由S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a2k-2+a2k-1+a2k)
=12-x+
1 |
2 |
=9k2-x+3=225,
∴x-9k2-222∈(
7 |
3 |
11 |
3 |
解得k=5.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询