在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(
在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值....
在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.
展开
1个回答
展开全部
(Ⅰ)设
=
=
=2R
则a=2RsinA,b=2RsinB,c=2RsinC
∵2asinA=(2b+c)sinB+(2c+b)sinC
方程两边同乘以2R
∴2a2=(2b+c)b+(2c+b)c
整理得a2=b2+c2+bc
∵由余弦定理得a2=b2+c2-2bccosA
故cosA=-
,A=120°
(Ⅱ)由(Ⅰ)得:sinB+sinC
=sinB+sin(60°-B)
=
cosB+
sinB
=sin(60°+B)
故当B=30°时,sinB+sinC取得最大值1.
a |
sinA |
b |
sinB |
c |
sinC |
则a=2RsinA,b=2RsinB,c=2RsinC
∵2asinA=(2b+c)sinB+(2c+b)sinC
方程两边同乘以2R
∴2a2=(2b+c)b+(2c+b)c
整理得a2=b2+c2+bc
∵由余弦定理得a2=b2+c2-2bccosA
故cosA=-
1 |
2 |
(Ⅱ)由(Ⅰ)得:sinB+sinC
=sinB+sin(60°-B)
=
| ||
2 |
1 |
2 |
=sin(60°+B)
故当B=30°时,sinB+sinC取得最大值1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询