线性代数,第二问解答中,为什么行列式不等于0就一定线性无关???行列式等于0不是也可以线性无关么

 我来答
热点那些事儿
高粉答主

2020-12-06 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:214万
展开全部

行列式的计算可知,当一个矩阵内的向量组都是线性无关,则说明该矩阵是满秩矩阵。若不是满秩矩阵,通过初等行变换则会出现某一行全为0,自然矩阵的行列式一定等于零。

向量的线性独立,一组向量中任意一个向量都不能由其它几个向量线性表示。特别地,所谓“线性关系”的本质就是“独立关系”(又叫线性独立),因为这时任何一辆车的“贡献”大小和有无(即其系数取正负、大小及是否取0等)皆与别的车无关。

扩展资料

初等行变换:

1、以P中一个非零的数乘矩阵的某一行。

2、把矩阵的某一行的c倍加到另一行,这里c是P中的任意一个数。

3、互换矩阵中两行的位置。

一般来说,一个矩阵经过初等行变换后就变成了另一个矩阵,当矩阵A经过初等行变换变成矩阵B时,一般写作

可以证明:任意一个矩阵经过一系列初等行变换总能变成阶梯型矩阵。

初等列变换

同样地,定义初等列变换,即:

1、以P中一个非零的数乘矩阵的某一列。

2、把矩阵的某一列的c倍加到另一列,这里c是P中的任意一个数。

3、互换矩阵中两列的位置。

小潘和小冠和小英是好朋友
2015-01-26 · 超过22用户采纳过TA的回答
知道答主
回答量:129
采纳率:0%
帮助的人:42万
展开全部
你好。由行列式的计算可知,当一个矩阵内的向量组都是线性无关,则说明该矩阵是满秩矩阵。若不是满秩矩阵,则会出现某一行全为0,自然矩阵的行列式一定等于零。
追答
在则会前面补充一句,通过初等行变换
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
电灯剑客
科技发烧友

2015-01-26 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:5004万
展开全部
当X是方阵的时候

det(X)=0 <=> X可逆 <=> Xt=0只有零解t=0 <=> X的列线性无关
全都是些基础结论,你应该好好看教材,这种教辅没什么好看的
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式