如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:△AD
如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:△ADC≌△BDF;(2)若CD=2,求AD...
如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:△ADC≌△BDF;(2)若CD=2,求AD的长.
展开
1个回答
展开全部
(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°.
∴∠ACD+∠DAC=90°.
∵∠BAD=45°,
∴∠ABD=45°,
∴∠BAD=∠DBA,
∴AD=BD.
∵BE⊥AC,
∴∠BEC=90°,
∴∠ACD+∠EBC=90°,∠ADB=∠ADC
∴∠DAC=∠DBF.
在△ADC和△BDF中,
,
∴△ADC≌△BDF(ASA);
(2)△ADC≌△BDF,
∴DC=DF.
∵CD=
,
∴DF=
.
在Rt△CDF中,由勾股定理,得
CF=2.
∵AB=BC,BE⊥AC,
∴AE=CE,
∴BE是AC的中垂线,
∴AF=CF,
∴AF=2,
∵AD=AF+DF,
∴AD=2+
.
答:AD的长为2+
.
∴∠ADB=∠ADC=90°.
∴∠ACD+∠DAC=90°.
∵∠BAD=45°,
∴∠ABD=45°,
∴∠BAD=∠DBA,
∴AD=BD.
∵BE⊥AC,
∴∠BEC=90°,
∴∠ACD+∠EBC=90°,∠ADB=∠ADC
∴∠DAC=∠DBF.
在△ADC和△BDF中,
|
∴△ADC≌△BDF(ASA);
(2)△ADC≌△BDF,
∴DC=DF.
∵CD=
2 |
∴DF=
2 |
在Rt△CDF中,由勾股定理,得
CF=2.
∵AB=BC,BE⊥AC,
∴AE=CE,
∴BE是AC的中垂线,
∴AF=CF,
∴AF=2,
∵AD=AF+DF,
∴AD=2+
2 |
答:AD的长为2+
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询