(2004?天津)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF
(2004?天津)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面E...
(2004?天津)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.
展开
1个回答
展开全部
解:方法一:
(1)证明:连接AC,AC交BD于O,连接EO.
∵底面ABCD是正方形,∴点O是AC的中点
在△PAC中,EO是中位线,∴PA∥EO
而EO?平面EDB且PA?平面EDB,
所以,PA∥平面EDB
(2)证明:
∵PD⊥底面ABCD且DC?底面ABCD,∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC.①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE?平面PDC,∴BC⊥DE.②
由①和②推得DE⊥平面PBC.
而PB?平面PBC,∴DE⊥PB
又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD.
(3)解:由(2)知,PB⊥DF,故∠EFD是二面角C-PB-D的平面角.
由(2)知,DE⊥EF,PD⊥DB.
设正方形ABCD的边长为a,
则PD=DC=a, BD=
aPB=
=
a,PC=
=
aDE=
PC=
a.
在Rt△PDB中,DF=
=
(1)证明:连接AC,AC交BD于O,连接EO.
∵底面ABCD是正方形,∴点O是AC的中点
在△PAC中,EO是中位线,∴PA∥EO
而EO?平面EDB且PA?平面EDB,
所以,PA∥平面EDB
(2)证明:
∵PD⊥底面ABCD且DC?底面ABCD,∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC.①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE?平面PDC,∴BC⊥DE.②
由①和②推得DE⊥平面PBC.
而PB?平面PBC,∴DE⊥PB
又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD.
(3)解:由(2)知,PB⊥DF,故∠EFD是二面角C-PB-D的平面角.
由(2)知,DE⊥EF,PD⊥DB.
设正方形ABCD的边长为a,
则PD=DC=a, BD=
2 |
PD2+BD2 |
3 |
PD2+DC2 |
2 |
1 |
2 |
| ||
2 |
在Rt△PDB中,DF=
PD?BD |
PB |
a?
|