已知函数f(x)=lnx,g(x)=12x2+mx+72(m<0),(I)若直线l与函数f(x),g(x)的图象都相切,且与

已知函数f(x)=lnx,g(x)=12x2+mx+72(m<0),(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1,求直线l... 已知函数f(x)=lnx,g(x)=12x2+mx+72(m<0),(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1,求直线l的方程及m的值;(Ⅱ)若h(x)=f(x+1)-g′(x)其中g′(x)是g(x)的导函数,求函数h(x)的最大值;(Ⅲ)当0<a<b,求证:f(a+b)-f(2b)<a?b2b. 展开
 我来答
百度网友65d611d0980
推荐于2016-04-01 · 超过64用户采纳过TA的回答
知道答主
回答量:136
采纳率:66%
帮助的人:61.7万
展开全部
(Ⅰ)依题意知,直线l是函数f(x)=lnx在(1,0)处的切线方程,故其斜率k=f'(1)=1,
所以直线l的方程为y=x-1.
又因为直线l与g(x)的图象相切,所以由
y=x?1
y=
1
2
x2+mx+
7
2
,得
1
2
x2+(m?1)x+
9
2
=0

得△=(m-1)2-9=0,解得m=-2或m=4(舍去).
(Ⅱ)因为h(x)=f(x+1)-g′(x)=ln(x+1)-x-m,(x>-1),
所以h′(x)=
1
x+1
?1=?
x
x+1
,当-1<x<0时,h'(x)>0,此时函数单调递增,
当x>0时,h'(x)<0,此时函数单调递减,
因此,当x=0时,函数h(x)取得最大值h(0)=-m.
(Ⅲ)由(Ⅱ)知,取m=-1,
当-1<x<0时,h(x)<2,即ln(1+x)<x,
当0<a<b时,?1<
a?b
2b
<0

因此有f(a+b)-f(2b)=ln
a+b
2b
=ln(1+
a?b
2b
)<
a?b
2b

所以不等式成立.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式