已知线性变换在一组基下的矩阵怎样求它的核与像

 我来答
帐号已注销
2020-12-27 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

求核空间Ker(A)的基相当于解线性方程组Ax=0,可以对A做初等行变换来实现。

求像空间Im(A)的基相当于求A的列的极大无关组,可以对A做初等列变换来实现。

核就是以矩阵为系数矩阵的齐次方程组的解集;值域就是先找出上述方程的解集的基;再找出包含这组基的线性空间的基;然后在线性空间的基里面去除解集的基,剩下的就是值域的基。

扩展资料:

支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间。特征空间的维数可能非常高。如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高维空间中这个内积,即K( x, x′) =<φ( x) ⋅φ( x′) > 。

那么支持向量机就不用计算复杂的非线性变换,而由这个函数 K(x, x′) 直接得到非线性变换的内积,使大大简化了计算。这样的函数 K(x, x′) 称为核函数

参考资料来源:百度百科-核函数

电灯剑客
科技发烧友

推荐于2018-03-01 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4931万
展开全部
求核空间Ker(A)的基相当于解线性方程组Ax=0,可以对A做初等行变换来实现
求像空间Im(A)的基相当于求A的列的极大无关组,可以对A做初等列变换来实现
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式