高中数学题 求解题过程

 我来答
soliyue
2015-06-04 · TA获得超过582个赞
知道小有建树答主
回答量:224
采纳率:0%
帮助的人:168万
展开全部
双曲线关于原点对称的.
∵A,B连线经过坐标原点
∴A,B关于原点对称
设A,P坐标分别为A(x1,y1),P(x2,y2)
那么B坐标为 (-x1,-y1)
则K(PA)=(y2-y1)/(x2-x1)
K(PB)=(y2+y1)/(x2+x1)
K(PA)·K(PB)=[(y2-y1)/(x2-x1)]·[(y2+y1)/(x2+x1)]
=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]
已知 K(PA)·K(PB)=2/3
∴ [(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]=2/3 ①
∵A,B,P在双曲线x^2/a^2-y^2/b^2=1上
∴(x1)^2/a^2-(y1)^2/b^2=1 ②
(x2)^2/a^2-(y2)^2/b^2=1 ③
③-②得:
[(x2)^2-(x1)^2]/a^2-[(y2)^2-(y1)^2]/b^2=0
移项,得 [(x2)^2-(x1)^2]/a^2=[(y2)^2-(y1)^2]/b^2
从而 b^2/a^2=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2] ④
由①④得 b^2/a^2=2/3
∵ c^2=a^2+b^2
∴ c^2=a^2+2/3*a^2=5/3*a^2
从而 c^2/a^2=5/3
又 e=c/a
由 即e^2=5/3
∴e=√(5/3)=√(15)/3
所以该双曲线的离心率=√15/3
匿名用户
2015-06-04
展开全部
b^2/a^2=2/3
更多追问追答
追问
结论么
追答
是,A,B关于原点对称,P在双曲线上 则有k(PA)k(PB)=b^2/a^2.
如果是椭圆就是-b^2/a^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式