用罗尔定理证明高阶导函数零点的存在性与个数统计。图片中评注里的①②没理解什么意思,可以举个例子吗? 10

 我来答
精锐教育傅老师
2015-08-30 · TA获得超过638个赞
知道小有建树答主
回答量:697
采纳率:0%
帮助的人:810万
展开全部
f(x)n阶可导,若f(x)在[a,b]有n+1个零点,那么f(x)的导数在(a,b)至少有n个零点,所以f(x)的二阶导数在(a,b)至少有n-1个零点……f(x)的n阶导数在(a,b)至少有1个零点。相反的若f(x)的n阶导数在(a,b)无零点,那么f(x)的n-1阶导数最多一个零点…f(x)在[a,b]最多n个零点
追答
这样说可以理解么,有疑问可以追问
geek_coder
2018-01-09
知道答主
回答量:1
采纳率:0%
帮助的人:915
展开全部
这是什么书?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式