正态分布中什么是1 sigma原则,2sigma原则,3sigma原则
sigma原则:数值分布在(μ-σ,μ+σ)中的概率为0.6526;
2sigma原则:数值分布在(μ-2σ,μ+2σ)中的概率为0.9544;
3sigma原则:数值分布在(μ-3σ,μ+3σ)中的概率为0.9974;
其中在正态分布中σ代表标准差,μ代表均值x=μ即为图像的对称轴。
由于“小概率事件”和假设检验的基本思想 “小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。
由此可见X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。
扩展资料:
曲线应用
综述
1、估计频数分布 一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。
2、制定参考值范围
(1)正态分布法 适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。
(2)百分位数法 常用于偏态分布的指标。表3-1中两种方法的单双侧界值都应熟练掌握。
3、质量控制:为了控制实验中的测量(或实验)误差,常以 作为上、下警戒值,以 作为上、下控制值。这样做的依据是:正常情况下测量(或实验)误差服从正态分布。
4、正态分布是许多统计方法的理论基础。检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。
参考资料来源:百度百科-正态分布
sigma原则:数值分布在(μ—σ,μ+σ)中的概率为0.6526
2sigma原则:数值分布在(μ—2σ,μ+2σ)中的概率为0.9544
3sigma原则:数值分布在(μ—3σ,μ+3σ)中的概率为0.9974
其中在正态分布中σ代表标准差,μ代表均值x=μ即为图像的对称轴。
3σ准则又称为拉依达准则,它是先假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差,按一定概率确定一个区间,认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除。且3σ适用于有较多组数据的时候。
可以认为,数值分布几乎全部集中在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性仅占不到0.3%.
在正态分布中σ代表标准差,μ代表均值x=μ即为图像的对称轴。
三σ原则即为:
数值分布在(μ—σ,μ+σ)中的概率为0.6526
数值分布在(μ—2σ,μ+2σ)中的概率为0.9544
数值分布在(μ—3σ,μ+3σ)中的概率为0.9974
补充更正高赞回答。2022-3-31