关于适用mathematica化简多项式,求教简单快速的方法
2个回答
展开全部
化简多项式:
In[1]:= FullSimplify[x^3 - 6 x^2 + 11 x - 6]
Out[1]= (-3 + x) (-2 + x) (-1 + x)
In[2]:= FullSimplify[(x^10 - 1) (x^10 + 1)]
Out[2]= -1 + x^20
将双曲线表达式化简为指数形式:
In[1]:= FullSimplify[Cosh[x] - Sinh[x]]
Out[1]= E^-x
将指数表达式化简为三角形式:
In[1]:= FullSimplify[(1 + I) E^(-I x) + (1 - I) E^(I x)]
Out[1]= 2 (Cos[x] + Sin[x])
化简一个代数数:
In[1]:= FullSimplify[Sqrt[2] + Sqrt[3] - Sqrt[5 + 2 Sqrt[6]]]
Out[1]= 0
化简超越数:
In[1]:= FullSimplify[-I Log[(1 + 2 I)/Sqrt[5]]]
Out[1]= ArcTan[2]
In[2]:= FullSimplify[16 ArcTan[1/5] - 4 ArcTan[1/239]]
Out[2]= \[Pi]
化简包含特殊函数的表达式:
In[1]:= FullSimplify[ExpIntegralE[1 - n, x] x^n]
Out[1]= Gamma[n, x]
In[2]:= FullSimplify[Csc[Pi v] (BesselI[-v, z] - BesselI[v, z])/2]
Out[2]= BesselK[v, z]/\[Pi]
用假设化简表达式:
In[1]:= FullSimplify[ProductLog[x E^x], x >= -1]
Out[1]= x
In[2]:= FullSimplify[E^(EllipticF[x, 1]), -Pi/2 < x < Pi/2]
Out[2]= Sec[x] + Tan[x]
In[3]:= FullSimplify[EulerPhi[p^2] + p, Element[p, Primes]]
Out[3]= p^2
根据公理系统证明定理:
In[1]:= FullSimplify[f[f[b, a], a] == f[a, f[b, a]],
ForAll[{a, b}, f[a, b] == f[b, a]]]
Out[1]= True
In[2]:= FullSimplify[f[a, a] == f[a, b], ForAll[{a, b}, f[f[a, a], b] == a]]
Out[2]= True
任意表达式可以用作一个变量:
In[3]:= FullSimplify[
Subscript[a, 1]\[CirclePlus]Subscript[a, 1] ==
Subscript[a, 1]\[CirclePlus]Subscript[a, 2],
ForAll[{a, b}, (a\[CirclePlus]a)\[CirclePlus]b == a]]
Out[3]= True
在定理中,无定量的变量被当作常量处理:
In[4]:= FullSimplify[f[f[e, e], e] == e, ForAll[a, f[a, e] == a]]
Out[4]= True
假定左边的恒等性和逆的存在性,证明右边逆的存在:
In[5]:= FullSimplify[ForAll[x, Exists[y, g[x, y] == e]],
ForAll[{x, y, z},
g[x, g[y, z]] == g[g[x, y], z] && g[e, x] == x && g[inv[x], x] == e]]
Out[5]= True
多看看自带帮助(F1)
In[1]:= FullSimplify[x^3 - 6 x^2 + 11 x - 6]
Out[1]= (-3 + x) (-2 + x) (-1 + x)
In[2]:= FullSimplify[(x^10 - 1) (x^10 + 1)]
Out[2]= -1 + x^20
将双曲线表达式化简为指数形式:
In[1]:= FullSimplify[Cosh[x] - Sinh[x]]
Out[1]= E^-x
将指数表达式化简为三角形式:
In[1]:= FullSimplify[(1 + I) E^(-I x) + (1 - I) E^(I x)]
Out[1]= 2 (Cos[x] + Sin[x])
化简一个代数数:
In[1]:= FullSimplify[Sqrt[2] + Sqrt[3] - Sqrt[5 + 2 Sqrt[6]]]
Out[1]= 0
化简超越数:
In[1]:= FullSimplify[-I Log[(1 + 2 I)/Sqrt[5]]]
Out[1]= ArcTan[2]
In[2]:= FullSimplify[16 ArcTan[1/5] - 4 ArcTan[1/239]]
Out[2]= \[Pi]
化简包含特殊函数的表达式:
In[1]:= FullSimplify[ExpIntegralE[1 - n, x] x^n]
Out[1]= Gamma[n, x]
In[2]:= FullSimplify[Csc[Pi v] (BesselI[-v, z] - BesselI[v, z])/2]
Out[2]= BesselK[v, z]/\[Pi]
用假设化简表达式:
In[1]:= FullSimplify[ProductLog[x E^x], x >= -1]
Out[1]= x
In[2]:= FullSimplify[E^(EllipticF[x, 1]), -Pi/2 < x < Pi/2]
Out[2]= Sec[x] + Tan[x]
In[3]:= FullSimplify[EulerPhi[p^2] + p, Element[p, Primes]]
Out[3]= p^2
根据公理系统证明定理:
In[1]:= FullSimplify[f[f[b, a], a] == f[a, f[b, a]],
ForAll[{a, b}, f[a, b] == f[b, a]]]
Out[1]= True
In[2]:= FullSimplify[f[a, a] == f[a, b], ForAll[{a, b}, f[f[a, a], b] == a]]
Out[2]= True
任意表达式可以用作一个变量:
In[3]:= FullSimplify[
Subscript[a, 1]\[CirclePlus]Subscript[a, 1] ==
Subscript[a, 1]\[CirclePlus]Subscript[a, 2],
ForAll[{a, b}, (a\[CirclePlus]a)\[CirclePlus]b == a]]
Out[3]= True
在定理中,无定量的变量被当作常量处理:
In[4]:= FullSimplify[f[f[e, e], e] == e, ForAll[a, f[a, e] == a]]
Out[4]= True
假定左边的恒等性和逆的存在性,证明右边逆的存在:
In[5]:= FullSimplify[ForAll[x, Exists[y, g[x, y] == e]],
ForAll[{x, y, z},
g[x, g[y, z]] == g[g[x, y], z] && g[e, x] == x && g[inv[x], x] == e]]
Out[5]= True
多看看自带帮助(F1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询