二次函数开口方向求解最值

 我来答
clsacesl
高粉答主

2017-04-09 · 醉心答题,欢迎关注
知道大有可为答主
回答量:5.1万
采纳率:64%
帮助的人:1.1亿
展开全部
二次函数中,最值的判断需要将函数y=ax^2+bx+c用配方法变形,得到y=a(x+m)^2+n,
一、当a为正数(即a.>0)那么函数开口向上,有最小值,在对称轴直线x=-m的左侧,递减,在对称轴的右侧递增,函数有最小值,y最小=n。此时顶点坐标为(-m,n)
二、当a为负数(即a<0)那么函数开口向下,有最大值,在对称轴直线x=-m的左侧,递增,在对称轴的右侧递减,函数有最大值,y最大=n。此时顶点坐标为(-m,n)
追答
收到了吗?
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
常宽喜宝
2017-04-09
知道答主
回答量:33
采纳率:0%
帮助的人:8万
展开全部
可以详细一点吗
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式