计算定积分:上限1/2 下限0 根号(1-x^2)dx

 我来答
尾桂花函癸
2020-05-11 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.3万
采纳率:35%
帮助的人:832万
展开全部
答案为√3/8+π/12
解题过程如下:
令x=sinΘ
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!
扩展资料
定理
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
向丹塞妍
2020-03-16 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:34%
帮助的人:872万
展开全部
令x=sinΘ
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12
扩展资料:
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
松恭载琬
2019-04-19 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:1194万
展开全部
令x=sinΘ
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12
很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式