如图,△ABC内接于⊙O,过点A的直线交⊙O于点P,交BC的延长线于点D,且AB2=AP·AD, 求APC的面积
1个回答
展开全部
连接BP,PC,∵△ABC为正三角形(有一角等于60°的等腰三角形一定是正三角形),
∴圆心O既是△ABC三个角平分线的交点,也是其三条边垂直平分线的交点,
∵⌒AP=⌒PC,∴BOP同在一条线上,且BP是圆直径=2,∠BAP=90°,∠ABP=∠PBC=30°,∴AP=PC=1/2BP=1,AB=AC=BC=√3,∵AB²=AP*AD ,即AD=AB²/AP=3,
∵等边△ABC的高=√3AB/2=3/2,
∴△APC中AC边上的高=2-3/2=1/2,面积=√3*1/2÷2=√3/4,
∴圆心O既是△ABC三个角平分线的交点,也是其三条边垂直平分线的交点,
∵⌒AP=⌒PC,∴BOP同在一条线上,且BP是圆直径=2,∠BAP=90°,∠ABP=∠PBC=30°,∴AP=PC=1/2BP=1,AB=AC=BC=√3,∵AB²=AP*AD ,即AD=AB²/AP=3,
∵等边△ABC的高=√3AB/2=3/2,
∴△APC中AC边上的高=2-3/2=1/2,面积=√3*1/2÷2=√3/4,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询