柯西不等式的证明 20

柯西不等式的代数形式,怎么用向量的方法证明... 柯西不等式的代数形式 ,怎么用向量的方法证明 展开
 我来答
zybtony
2010-07-26 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1685
采纳率:0%
帮助的人:2602万
展开全部
Cauchy不等式的形式化写法就是:
记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.
令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则恒有 f(x) ≥ 0.
用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.
于是移项得到结论。
还可以用向量来证.
m=(a1,a2......an) n=(b1,b2......bn)
mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2乘以cosX.
因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2
这就证明了不等式.
柯西不等式还有很多种方法证,这里只写出两种较常用的证法.
MYMUSISE
2010-08-07 · 超过10用户采纳过TA的回答
知道答主
回答量:56
采纳率:0%
帮助的人:57万
展开全部
百科上有啊,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
僧碧戎0eF
2020-05-26 · TA获得超过724个赞
知道答主
回答量:5258
采纳率:0%
帮助的人:277万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式