如何判断向量组是否线性相关?
2个回答
展开全部
判断向量组线性相关性的方法:写成矩阵形式,然后通过行变换,化为行最简形,得到矩阵的秩;得出矩阵的秩,用来和向量个数比较;因为向量组组成的矩阵的秩小于向量个数,所以得出。
在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立(linearlyindependent),反之称为线性相关(linearlydependent)。
例如在三维欧几里得空间R3的三个矢量(1,0,0),(0,1,0)和(0,0,1)线性无关。但(2,_1,1),(1,0,1)和(3,_1,2)线性相关,因为第三个是前两个的和。向量a1,a2,···,an(n_2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。一个向量线性相关的充分条件是它是一个零向量。
两个向量a、b共线的充要条件是a、b线性相关。三个向量a、b、c共面的充要条件是a、b、c线性相关。空间中任意四个向量总是线性相关。
在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立(linearlyindependent),反之称为线性相关(linearlydependent)。
例如在三维欧几里得空间R3的三个矢量(1,0,0),(0,1,0)和(0,0,1)线性无关。但(2,_1,1),(1,0,1)和(3,_1,2)线性相关,因为第三个是前两个的和。向量a1,a2,···,an(n_2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。一个向量线性相关的充分条件是它是一个零向量。
两个向量a、b共线的充要条件是a、b线性相关。三个向量a、b、c共面的充要条件是a、b、c线性相关。空间中任意四个向量总是线性相关。
展开全部
定义法令向量组的线性组合为零,研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。
线性相关定理
在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立,反之称为线性相关。
例如在三维欧几里得空间R的三个矢量(1,0,0),(0,1,0)和(0,0,1)线性无关;但(2,−1,1),(1,0,1)和(3,−1,2)线性相关,因为第三个是前两个的和。
线性无关和线性相关
1、对于任一向量组而言,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询