什么是方程的根?
所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。
所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根。
0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。
扩展资料
分类:
1、重根
在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0 此方程的根:x=12,x2=-2。
虽然x=-2符合方程的根的条件,但由于考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个问题的解了,只能说是方程的根。
2、无根
一元高次方程的情况是一样的,如:方程x^3=1有1个实根和2个虚根,有时,方程根和解不作区别,方程无解又称无根。
3、增根
解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。
4、不存在根
而对于多元方程来说,方程的解就不能说成是方程的根。这时解与根是有区别的。因为这样的方程是不存在根的概念的。
参考资料来源:百度百科-根 (数学代数学中的术语)
2024-10-28 广告