已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE. 我来答 1个回答 #热议# 不吃早饭真的会得胆结石吗? 世纪网络17 2022-06-17 · TA获得超过5933个赞 知道小有建树答主 回答量:2426 采纳率:100% 帮助的人:140万 我也去答题访问个人页 关注 展开全部 证明:延长CE、BA交于点F. ∵CE⊥BD于E,∠BAC=90°, ∴∠ABD=∠ACF. 又AB=AC,∠BAD=∠CAF=90°, ∴△ABD≌△ACF, ∴BD=CF. ∵BD平分∠ABC, ∴∠CBE=∠FBE.有BE=BE, ∴△BCE≌△BFE, ∴CE=EF, ∴CE= BD,∴BD=2CE. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2011-11-04 如图,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E。求证:BD=2CE. 58 2010-11-04 已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC,求证:AB*BC=AC*CD 49 2011-11-02 已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE. 10 2012-04-09 在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE。求证:BD=2CE。 41 2020-05-09 在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE,求证:BD=2CE 3 2012-07-06 已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE. 13 2011-08-06 ∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE 8 2016-03-05 在△ABC中,∠ABC=2∠C,BD平分∠ABC,交AC于D,AE⊥BD,垂足为E.求证:AC=2BE 3 为你推荐: