什么是聚点,有怎样的定义?
1个回答
展开全部
聚点,多义词。
一是指高等数学中又被叫做“极限点”的定义,即:设E是数轴上的无限点集,P是数轴上的一个定点(可以属于E,也可以不属于E)。若任意的e大于0,点P的e邻域U(P,e)都含有E的无限多个点,则称P是E的一个聚点。
另一种是用iebook超级精灵电子杂志制作软件制作的电子杂志名称。
在拓扑学、数学分析和复分析中都有聚点的概念。
在拓扑学中设拓扑空间(X,τ),A⊆X,x∈X。若x的每个邻域都含有A \ {x}中的点,则称x为A的聚点。
在数学分析中坐标平面上具有某种性质的点的集合,称为平面点集。给定点集E ,对于任意给定的δ〉0 ,点P 的δ去心邻域内,总有E 中点,则称为P 是 E的聚点(或叫作极限点)。
聚点可以是E中的点,也可以不属于E。此聚点要么是内点,要么是边界点。内点是聚点,界点是聚点,孤立点不是聚点。对于有限点集是不存在聚点的。聚点必须相对给定的集合而言,离开了点集E,聚点就没有意义。
在复分析中点集E,若在复平面上的一点z的任意邻域都有E的无穷多个点,则称z为E的聚点。
以聚点为圆心,任意大的半径大ε>0画一圆,总有无穷多个点汇聚在该圆内。若聚点是唯一的,则聚点就是极限点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询