设N阶实方阵A不等于O,且A的伴随阵等于A的转置矩阵,证明A可逆.
1个回答
展开全部
由A* A= |A|E,A* = A'
得 A'A = |A|E.
再由A不等于0,设 aij≠0.
则比较 A'A = |A|E 第j行第j列元素有
a1j^2+a2j^2+...+aij^2+...+anj^2 = |A|
而A是实方阵且 aij≠0.
所以 |A| ≠ 0.
所以 A 可逆.
得 A'A = |A|E.
再由A不等于0,设 aij≠0.
则比较 A'A = |A|E 第j行第j列元素有
a1j^2+a2j^2+...+aij^2+...+anj^2 = |A|
而A是实方阵且 aij≠0.
所以 |A| ≠ 0.
所以 A 可逆.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询