设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.?
1个回答
展开全部
先用数归证1,6,不动点法。令f(x)=(1/2)[x+(1/x)],x>0
f'(x)=(1/2)(x²-1)/x²,可知当x>1时f'(x)>0,f(x)为增函数
令f(x)>x,即(1/2)[x+(1/x)]>x,得0<x<1,可知不动点为x=1,x>1时f(x)<x
x1=2>1,于是f(1)<f(x1)<x1,
得1<x2<x1,同理f(1)<f(x2)...,3,Xn显然>0
由均值不等式
X(n+1)>=1
X(n+1)-Xn=1/2(1/xn-xn)<=0
Xn递减且有下界,收敛
设limXn=a>0
由Xn+1=1/2(Xn+1/Xn)
a=1/2(a+1/a)
=>a=1
希望对你有帮助!,0,
f'(x)=(1/2)(x²-1)/x²,可知当x>1时f'(x)>0,f(x)为增函数
令f(x)>x,即(1/2)[x+(1/x)]>x,得0<x<1,可知不动点为x=1,x>1时f(x)<x
x1=2>1,于是f(1)<f(x1)<x1,
得1<x2<x1,同理f(1)<f(x2)...,3,Xn显然>0
由均值不等式
X(n+1)>=1
X(n+1)-Xn=1/2(1/xn-xn)<=0
Xn递减且有下界,收敛
设limXn=a>0
由Xn+1=1/2(Xn+1/Xn)
a=1/2(a+1/a)
=>a=1
希望对你有帮助!,0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询