矩阵A可以表示成若干初等矩阵的乘积

 我来答
睿智小宁
高粉答主

2022-10-13 · 醉心答题,欢迎关注
知道小有建树答主
回答量:1266
采纳率:100%
帮助的人:35.6万
展开全部

A矩阵不可逆的条件有如下7种: 

1.|A| = 0

2.A的列(行)向量组线性相关

3.R(A)<n

4.AX=0 有非零解

5.A有特征值0

6.A不能表示成初等矩阵的乘积

7.A的等价标准形不是单位矩阵

扩展资料

可逆矩阵的性质:

1.可逆矩阵一定是方阵。

2.如果矩阵A是可逆的,其逆矩阵是唯一的。

3.A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4.可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5.若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6.两个可逆矩阵的乘积依然可逆。

7.矩阵可逆当且仅当它是满秩矩阵。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式