如何证明一个递减函数一定是单调的?

 我来答
我爱学习112
高粉答主

2023-06-16 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:162万
展开全部

函数y=f(x)是递减函数,那么对定义域内任意两个值x1,x2,当x1<x2时,一定有f(x1)>f(x2)。

对于数列{an},满足a(n+1)=f(an),如果条件an<a(n+1)成立,那么一定有f(an)>f(a(n+1))。

即a(n+1)>a(n+2),从而又可推出a(n+2)<a(n+3),...这是一个摆动数列,所{an}不具有单调性。

勒维连续定理

如果两个随机变量具有相同的特征函数,那么它们具有相同的概率分布; 反之, 如果两个随机变量具有相同的概率分布, 它们的特征函数也相同(显然)。

独立随机变量和的特征函数等于每个随机变量特征函数的乘积。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式