已知a-1/a=√3,求(a^10+a^6+a^4+1)/(a^10+a^8+a^2+1)
1个回答
展开全部
a-1/a=√3
两边平方:a²+1/a²-2*a*1/a=3
a²+1/a²-2=3
a²+1/a²=5
两边平方:
a^4+1/a^4+2=25
a^4+1/a^4=23
(a^10+a^6+a^4+1)/(a^10+a^8+a^2+1)
=(a^6+1)(a^4+1)/[(a^2+1)(a^8+1)]
=(a^2+1)(a^4-a^2+1)(a^4+1)/[(a^2+1)(a^8+1)],
=(a^4-a^2+1)(a^4+1)/(a^8+1)
=(a^4-a^2+1)(a^2+1/a^2)/(a^6+1/a^2),【分子分母同除以a^2】
=(a^4-a^2+1)(5)/(a^6+1/a^2)
=5(a^2-1+1/a^2)/(a^4+1/a^4),【分子分母同除以a^2】
=5(5-1)/23
=20/23
两边平方:a²+1/a²-2*a*1/a=3
a²+1/a²-2=3
a²+1/a²=5
两边平方:
a^4+1/a^4+2=25
a^4+1/a^4=23
(a^10+a^6+a^4+1)/(a^10+a^8+a^2+1)
=(a^6+1)(a^4+1)/[(a^2+1)(a^8+1)]
=(a^2+1)(a^4-a^2+1)(a^4+1)/[(a^2+1)(a^8+1)],
=(a^4-a^2+1)(a^4+1)/(a^8+1)
=(a^4-a^2+1)(a^2+1/a^2)/(a^6+1/a^2),【分子分母同除以a^2】
=(a^4-a^2+1)(5)/(a^6+1/a^2)
=5(a^2-1+1/a^2)/(a^4+1/a^4),【分子分母同除以a^2】
=5(5-1)/23
=20/23
追问
我已经搞定了,谢谢!
追答
满意请采纳。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询