设命题p:函数f(x)=lg(ax²-4x+a)的定义域为R,命题q:不等式2x²+x>2+ax,
设命题p:函数f(x)=lg(ax²-4x+a)的定义域为R,命题q:不等式2x²+x>2+ax,对所有的x∈(-∞,-1)上恒成立,如果命题p∨q为...
设命题p:函数f(x)=lg(ax²-4x+a)的定义域为R,命题q:不等式2x²+x>2+ax,对所有的x∈(-∞,-1)上恒成立,如果命题p∨q为真命题,p∧q为假命题,求实数a的取值范围?
展开
1个回答
展开全部
命题p:函数f(x)=lg(ax²-4x+a)的定义域为R,
则ax²-4x+a>0恒成立,
从而 a>0且⊿=16-4a²<0
解得 a>2
命题q:不等式2x²+x>2+ax,对所有的x∈(-∞,-1)上恒成立,
由于x<0,分离参数,得
a>(2x²+x-2)/x=2x -2/x +1, x∈(-∞,-1)
令f(x)=2x -2/x +1, x∈(-∞,-1]
则a≥[f(x)]max,x∈(-∞,-1]
而f'(x)=2+2/x²>0,f(x)在(-∞,-1]上是增函数,
最大值为f(-1),
从而a≥f(-1)=1
于是 p:a>2,q:a≥1
如果命题p∨q为真命题,p∧q为假命题,
则p和q一真一假。由于p真时,q也真,
从而 p假q真,即 1≤a≤2
则ax²-4x+a>0恒成立,
从而 a>0且⊿=16-4a²<0
解得 a>2
命题q:不等式2x²+x>2+ax,对所有的x∈(-∞,-1)上恒成立,
由于x<0,分离参数,得
a>(2x²+x-2)/x=2x -2/x +1, x∈(-∞,-1)
令f(x)=2x -2/x +1, x∈(-∞,-1]
则a≥[f(x)]max,x∈(-∞,-1]
而f'(x)=2+2/x²>0,f(x)在(-∞,-1]上是增函数,
最大值为f(-1),
从而a≥f(-1)=1
于是 p:a>2,q:a≥1
如果命题p∨q为真命题,p∧q为假命题,
则p和q一真一假。由于p真时,q也真,
从而 p假q真,即 1≤a≤2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询