.(2010年重庆市)已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第

.(2010年重庆市)已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC... .(2010年重庆市)已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由. 展开
 我来答
tyq1997
2014-01-25 · TA获得超过11.1万个赞
知道大有可为答主
回答量:2.4万
采纳率:94%
帮助的人:3037万
展开全部
(1)过点C作CD⊥OA于点D.(如图)

∵OC=AC,∠ACO=120°,
∴∠AOC=∠OAC=30°.
∵OC=AC,CD⊥OA,∴OD=DA=1.
在Rt△ODC中,三十度所对的边为斜边的一半,所以oc=三分之二倍根号三
(i)当0<t<三分之二时,OQ=t,AP=3t,OP=OA-AP=2-3t.
过点Q作QE⊥OA于点E.(如图)
在Rt△OEQ中,∵∠AOC=30°,∴QE=二分之一,OQ=二分之t,
∴S△OPQ=二分之一,OP•EQ=二分之一(2-3t)•二分之t=-四分之三t²+二分之一t,
即S=-四分之三t²+二分之一t;(3分)
(ii)当三分之二≤t<三分之四时(如图)

OQ=t,OP=3t-2.
∴∠BOA=60°,∠AOC=30°,∴∠POQ=90°.
∴S△OPQ=二分之一OQ•OP=二分之一t•(3t-2)=三分之二t²-t,
即S=-三分之二t²-t;
故当0<t<三分之二时,S=-四分之三t²+二分之一t,当三分之二≤t<三分之四时,S=二分之三t²-t(5分)

(2)D(三分之根号三,1)或(三分之二倍根号三,0)或(三分之二,0)或(三分之四,三分之二倍根号三)(9分)

(3)△BMN的周长不发生变化.理由如下:
延长BA至点F,使AF=OM,连接CF.(如图)

又∵∠MOC=∠FAC=90°,OC=AC,
∴△MOC≌△FAC,
∴MC=CF,∠MCO=∠FCA.(10分)
∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA
=∠OCA-∠MCN
=60°,
∴∠FCN=∠MCN.
又∵MC=CF,CN=CN,
∴△MCN≌△FCN,
∴MN=NF.(11分)
∴BM+MN+BN=BM+NF+BN=BO-OM+BA+AF=BA+BO=4.
∴△BMN的周长不变,其周长为4.
更多追问追答
追问
亲,您这粘的真彻底,我刚刚就看的这个,没图啊!而且没有第三问。。
追答
第三问有啊(3)△BMN的周长不发生变化.理由如下:
延长BA至点F,使AF=OM,连接CF.(如图)

又∵∠MOC=∠FAC=90°,OC=AC,
∴△MOC≌△FAC,
∴MC=CF,∠MCO=∠FCA.(10分)
∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA
=∠OCA-∠MCN
=60°,
∴∠FCN=∠MCN.
又∵MC=CF,CN=CN,
∴△MCN≌△FCN,
∴MN=NF.(11分)
∴BM+MN+BN=BM+NF+BN=BO-OM+BA+AF=BA+BO=4.
∴△BMN的周长不变,其周长为4.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式