已知在△ABC中角ACB=90度,点P线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MN⊥AC于点N,PQ……
补充:PQ⊥AB于点Q,AQ=AM,NP=2,PC=3。(1)求证PC=AN(2)求BC的长度。...
补充:PQ⊥AB于点Q,AQ=AM,NP=2,PC=3。(1)求证PC=AN(2)求BC的长度。
展开
1个回答
展开全部
解答:(1)证明:证法一:
如图①,∵BA⊥AM,MN⊥AC,
∴∠BAM=ANM=90°,
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,
∴∠PAQ=∠AMN,
∵PQ⊥AB MN⊥AC,
∴∠PQA=∠ANM=90°,
∴AQ=MN,
∴△AQP≌△MNA(ASA)
∵AN=PQ AM=AP,
∴∠AMB=∠APM
∵∠APM=∠BPC,∠BPC+∠PBC=90°,∠AMB+∠ABM=90°
∴∠ABM=∠PBC
∵PQ⊥AB,PC⊥BC
∴PQ=PC(角平分线的性质),
∴PC=AN;
证法二:
如图①,∵BA⊥AM,MN⊥AC,
∴∠BAM=ANM=90°
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°
∴∠PAQ=∠AMN
∵PQ⊥AB,
∴∠AQP=90°=∠ANM
∵AQ=MN,
∴△PQA≌△ANM(ASA)
∴AP=AM,PQ=AN,
∴∠APM=∠AMP
∵∠AQP+∠BAM=180°,
∴PQ∥MA
∴∠QPB=∠AMP
∵∠APM=∠BPC,
∴∠QPB=∠BPC
∵∠BQP=∠BCP=90°,BP=BP
∴△BPQ≌△BPC(AAS)
∴PQ=PC,
∴PC=AN.
小学生数学团
望采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询