1+1/2+1/3+……+1/n等于多少
6个回答
展开全部
1+1/2+1/3+……+1/n等于(n+1)n/2。
具体回答如下:
1+2+3+4+5......+n
=(n+1)+(2+n-1)+(3+n-2)+……(n/2+n/2+1)【首尾相加】
=(n+1)n/2
等差数列基本性质:
1、在等差数列中,S = a,S = b (n>m),则S = (a-b)。
2、记等差数列的前n项和为S。若a >0,公差d<0,则当a ≥0且an +1≤0时,S 最大;若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小。
3、若等差数列Sp=q,Sq=p,则Sp+q=-p-q,并且有ap=q,aq=p则ap+q=0。
展开全部
这个问题是世界100个难题中,始终没有解决的最后的几个难题之一。在这一点上它和著名的“1+1”相当。但是它没有大的价值,这又和“1+1”不同。它已经有了近似公式:1+1/2+1/3+1/4++1/n~=lnn+C(其中lnn是n的自然对数;C=0.577216……是一个专门用来计算调和数列的前n项和的无理数,叫做欧拉常数)迄今为止,没有人算出过它的通项公式。连它是发散的级数这个性质,也是很晚才得出的。后来发现,再给它加个项,-ln(n)的情况下,发现它是收敛的级数,在n趋向于无穷大的时候,定义它的极限为r(咖玛),称为欧拉常数。1+1÷2+1÷3+.......+1÷n近似的等于ln(n)+r,在n趋向于无穷大时取等号. 当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n)
0.57721566490153286060651209叫做欧拉常数
1+1/2+1/3+…+1/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。
自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):
1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)
得到公式, 用C++实现就容易了 long double Sn( const unsigned int& n ) { const long double euler = 0.57721566490153286060651209;
return ( log( static_cast<long double>(n) ) + euler );
}
一个可以计算欧拉常数的递推公式的
euler= 1 + 1/2 + ... + 1/m -ln(m) - 1/(2m) + 1/(12m^2) - 1/(120m^4) + 1/(252m^6)- o(m)
其中
|o(m)| <= 22.5*(m * PI)^(-7)
因此只要选择一个合适的m使o(m)不影响精度即可
例如,当m=5的时候,精度高于1E-7.
0.57721566490153286060651209叫做欧拉常数
1+1/2+1/3+…+1/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。
自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):
1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)
得到公式, 用C++实现就容易了 long double Sn( const unsigned int& n ) { const long double euler = 0.57721566490153286060651209;
return ( log( static_cast<long double>(n) ) + euler );
}
一个可以计算欧拉常数的递推公式的
euler= 1 + 1/2 + ... + 1/m -ln(m) - 1/(2m) + 1/(12m^2) - 1/(120m^4) + 1/(252m^6)- o(m)
其中
|o(m)| <= 22.5*(m * PI)^(-7)
因此只要选择一个合适的m使o(m)不影响精度即可
例如,当m=5的时候,精度高于1E-7.
追问
。。。。。。
如此长
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/2(1+n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-09-08
展开全部
能抄下来吗?
更多追问追答
追问
怎么抄?
就是这样的吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询