已知数列{an}满足a1=5,a2=5,an+1=an+6an-1,(n≥2,n∈N*).(Ⅰ)求证数列{an+1+2an}是等比数列;(
已知数列{an}满足a1=5,a2=5,an+1=an+6an-1,(n≥2,n∈N*).(Ⅰ)求证数列{an+1+2an}是等比数列;(Ⅱ)求出所有使数列{an+1+λ...
已知数列{an}满足a1=5,a2=5,an+1=an+6an-1,(n≥2,n∈N*).(Ⅰ)求证数列{an+1+2an}是等比数列;(Ⅱ)求出所有使数列{an+1+λan}成等比数列的λ的值;(Ⅲ)求数列{an}的通项公式.
展开
展开全部
解答:(Ⅰ)证明:由an+1=an+6an-1,得
an+1+2an=3(an+2an-1)(n≥2),
∵a1=5,a2=5,∴a2+2a1=15,
故数列{an+1+2an}是以15为首项,3为公比的等比数列;
(Ⅱ)∵数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2,n∈N*),
{an+1+λan}的前三项分别为5+5λ,35+5λ,65+35λ,
依题意得(7+λ)2=(1+λ)(13+7λ),
解得λ=-3或2.
当n=2时,{an+2an-1}是首项为15公比为3的等比数列,
当λ=-3时,{an-3an-1}是首项为-10,公比为-2的等比数列;
(Ⅲ)由(Ⅰ)得an+1+2an=5?3n,由待定系数法可得(an+1-3n+1)=-2(an-3n),
即an-3n=2(-2)n-1,
故an=3n+2(-2)n-1=3n-(-2)n.
an+1+2an=3(an+2an-1)(n≥2),
∵a1=5,a2=5,∴a2+2a1=15,
故数列{an+1+2an}是以15为首项,3为公比的等比数列;
(Ⅱ)∵数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2,n∈N*),
{an+1+λan}的前三项分别为5+5λ,35+5λ,65+35λ,
依题意得(7+λ)2=(1+λ)(13+7λ),
解得λ=-3或2.
当n=2时,{an+2an-1}是首项为15公比为3的等比数列,
当λ=-3时,{an-3an-1}是首项为-10,公比为-2的等比数列;
(Ⅲ)由(Ⅰ)得an+1+2an=5?3n,由待定系数法可得(an+1-3n+1)=-2(an-3n),
即an-3n=2(-2)n-1,
故an=3n+2(-2)n-1=3n-(-2)n.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询