如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是( ) A
如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是()A.3B.2C.1.5D.1...
如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是( ) A. 3 B. 2 C. 1.5 D. 1
展开
1个回答
展开全部
D |
试题分析:根据平行四边形的性质可知∠DFC=∠FCB,又因为CF平分∠BCD,所以∠DCF=∠FCB,则∠DFC=∠DCF,则DF=DC,同理可证AE=AB,那么EF就可表示为AE+FD﹣BC=2AB﹣BC,继而可得出答案. 解:∵平行四边形ABCD, ∴∠DFC=∠FCB, 又CF平分∠BCD, ∴∠DCF=∠FCB, ∴∠DFC=∠DCF, ∴DF=DC, 同理可证:AE=AB, ∴2AB﹣BC=AE+FD﹣BC=EF=1cm. 故选D. 点评:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询