如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.(1)
如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.(1)求点E到BC的距离;(2)点P为线段EF...
如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
展开
1个回答
展开全部
解:(1)如图1,过点E作EG⊥BC于点G.
∵E为AB的中点,
∴BE=
AB=2
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=
BE=1,EG=
=
即点E到BC的距离为
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PM⊥EF,EG⊥EF,
∴PM∥EG,又EF∥BC,
∴四边形EPMG为矩形,
∴EP=GM,PM=EG=
同理MN=AB=4.
如图2,过点P作PH⊥MN于H,
∵MN∥AB,
∴∠NMC=∠B=60°,又∠PMC=90°,
∴∠PMH=∠PMC-∠NMC=30°.
∴PH=
PM=
∴MH=PM?cos30°=
则NH=MN-MH=4-
=
在Rt△PNH中,PN=
∵E为AB的中点,
∴BE=
1 |
2 |
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=
1 |
2 |
22?12 |
3 |
即点E到BC的距离为
3 |
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PM⊥EF,EG⊥EF,
∴PM∥EG,又EF∥BC,
∴四边形EPMG为矩形,
∴EP=GM,PM=EG=
3 |
同理MN=AB=4.
如图2,过点P作PH⊥MN于H,
∵MN∥AB,
∴∠NMC=∠B=60°,又∠PMC=90°,
∴∠PMH=∠PMC-∠NMC=30°.
∴PH=
1 |
2 |
| ||
2 |
∴MH=PM?cos30°=
3 |
2 |
则NH=MN-MH=4-
3 |
2 |
5 |
2 |
在Rt△PNH中,PN=
NH
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|