已知等差数列{an}的前n项和为Sn,且a2=8,S4=40.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*.(Ⅰ)求
已知等差数列{an}的前n项和为Sn,且a2=8,S4=40.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*.(Ⅰ)求数列{an},{bn}的通项公式;(...
已知等差数列{an}的前n项和为Sn,且a2=8,S4=40.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)设cn=an,n为奇数bn,n为偶数,求数列{cn}的前2n+1项和P2n+1.
展开
展开全部
(Ⅰ)设等差数列{an}的公差为d,
由题意,得
,解得
,
∴an=4n;
∵Tn-2bn+3=0,∴当n≥2时,Tn-1-2bn-1+3=0,
两式相减,得bn=2bn-1,(n≥2)
又当n=1时,b1=3,
则数列{bn}为等比数列,
∴bn=3?2n?1;
(Ⅱ)cn=
∴P2n+1=(a1+a3+…+a2n+1)+(b2+b4+…+b2n)
=
?(n+1)+
=22n+1+4n2+8n+2.
由题意,得
|
|
∴an=4n;
∵Tn-2bn+3=0,∴当n≥2时,Tn-1-2bn-1+3=0,
两式相减,得bn=2bn-1,(n≥2)
又当n=1时,b1=3,
则数列{bn}为等比数列,
∴bn=3?2n?1;
(Ⅱ)cn=
|
∴P2n+1=(a1+a3+…+a2n+1)+(b2+b4+…+b2n)
=
4+4(2n+1) |
2 |
6(1?4n) |
1?4 |
=22n+1+4n2+8n+2.
展开全部
解:(Ⅰ)设等差数列{an}的公差为d,
由题意,得
a1+d=8 4a1+6d=40
解得
a1=4d=4
∴an=4n,
∵Tn-2bn+3=0,∴当n=1时,b1=3
当n≥2时,Tn-1-2bn-1+3=0,
两式相减,得bn=2bn-1,(n≥2)
则数列{bn}为等比数列,
∴bn=3•2n-1;
(Ⅱ)cn=4n n为奇数
3*2n-1 n为偶数
当n为偶数时,Pn=(a1+a3+…+an-1)+(b2+b4+…+bn)
=[(4+4n-4)•n/2]/2+[6(1-4^n/2)]/(1-4)
=2n+1+n2-2.
当n为奇数时,
(法一)n-1为偶数,Pn=Pn-1+cn=2^[(n-1)+1]+(n-1)^2-2+4n=2^n+n^2+2n-1,
(法二)Pn=(a1+a3+…+an-2+an)+(b2+b4+…+bn-1)
=[(4+4n)•(n+1)/2]/2+6(1-4^[(n-1)/2])/(1-4)
=2^n+n^2+2n-1.
∴Pn=2^(n+1)+n^2-2,n为偶数
2^n+n^2+2n-1,n为奇数
由题意,得
a1+d=8 4a1+6d=40
解得
a1=4d=4
∴an=4n,
∵Tn-2bn+3=0,∴当n=1时,b1=3
当n≥2时,Tn-1-2bn-1+3=0,
两式相减,得bn=2bn-1,(n≥2)
则数列{bn}为等比数列,
∴bn=3•2n-1;
(Ⅱ)cn=4n n为奇数
3*2n-1 n为偶数
当n为偶数时,Pn=(a1+a3+…+an-1)+(b2+b4+…+bn)
=[(4+4n-4)•n/2]/2+[6(1-4^n/2)]/(1-4)
=2n+1+n2-2.
当n为奇数时,
(法一)n-1为偶数,Pn=Pn-1+cn=2^[(n-1)+1]+(n-1)^2-2+4n=2^n+n^2+2n-1,
(法二)Pn=(a1+a3+…+an-2+an)+(b2+b4+…+bn-1)
=[(4+4n)•(n+1)/2]/2+6(1-4^[(n-1)/2])/(1-4)
=2^n+n^2+2n-1.
∴Pn=2^(n+1)+n^2-2,n为偶数
2^n+n^2+2n-1,n为奇数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询