已知椭圆中心在原点,焦点在x轴上,一个顶点为A(0,-1),且其右焦点到直线x-y+22=0的距离为3.(1)求
已知椭圆中心在原点,焦点在x轴上,一个顶点为A(0,-1),且其右焦点到直线x-y+22=0的距离为3.(1)求椭圆的方程;(2)是否存在斜率为k(k≠0)的直线l,使l...
已知椭圆中心在原点,焦点在x轴上,一个顶点为A(0,-1),且其右焦点到直线x-y+22=0的距离为3.(1)求椭圆的方程;(2)是否存在斜率为k(k≠0)的直线l,使l与已知椭圆交于不同的两点M,N,且AN=AM?若存在,求出k的取值范围;若不存在,请说明理由.
展开
1个回答
展开全部
(1)因为椭圆中心在原点,焦点在x轴上,一个顶点为A(0,-1),
由题意,可设椭圆的方程
+y 2=1 (a>1),则其右焦点F(
,0)
所F到直雹散线x-y+2
=0的距离d=3,解得a2=3
所以椭圆的方程
+y 2=1(4分)
(2)设存在直线l,
设其方程为:y=kx+b,
消去y得:(3k2+1)x2+6bkx+3b2-3=0①蔽巧,
设M(x1,y1),N(x2,y2),
△=36b2k2-4(1+3k2)(3b2-3)>0,1+3k2-b2>0②,
∴x1+x2=宏肆键?
∴y1+y2=
MN的中点P的坐标(?
,
),
因AN=AM,所AP是线MN的垂直平分线,∴AP⊥MN,
根据斜率之积为-1,可得:
b=
,将其代入②并整理(3k2+1)(k2-1)<0
∴-1<k<1故存在满足条件的直l,其斜率的取值范围-1<k<1,k≠0.(12分)
由题意,可设椭圆的方程
x2 |
a 2 |
a 2?1 |
所F到直雹散线x-y+2
2 |
所以椭圆的方程
x2 |
3 |
(2)设存在直线l,
设其方程为:y=kx+b,
|
设M(x1,y1),N(x2,y2),
△=36b2k2-4(1+3k2)(3b2-3)>0,1+3k2-b2>0②,
∴x1+x2=宏肆键?
6bk |
1+3k2 |
∴y1+y2=
2b |
1+3k2 |
MN的中点P的坐标(?
3bk |
1+3k2 |
b |
1+3k2 |
因AN=AM,所AP是线MN的垂直平分线,∴AP⊥MN,
根据斜率之积为-1,可得:
b=
3k 2+1 |
2 |
∴-1<k<1故存在满足条件的直l,其斜率的取值范围-1<k<1,k≠0.(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询