展开全部
a(n+1)=2[(an)^2]
an=2{[a(n-1)]^2}
两式相除:
a(n+1)/an=[(an)^2]/{[a(n-1)]^2}
=[an/a(n-1)]^2
={[a(n-1)/a(n-2)]^2}^2=[a(n-1)/a(n-2)]^4
={[a(n-2)/a(n-3)]^2}^4=[a(n-2)/a(n-3)]^(2^3)
……
=[a2/a1]^[2^(n-1)]
=(a2)^[2^(n-1)]
a(n+1)=an*(a2)^[2^(n-1)]
a2=2(a1)^2=2
a(n+1)=an*2^[2^(n-1)]
an=a(n-1)*2^[2^(n-2)]
……
a2=a1*2^[2^0]
叠乘:
an=a1*2^[2^(n-2)]*2^[2^(n-3)]*2^[2^(n-4)]*……*2^[2^(3-2)]*2^[2^(2-2)]
=2^[2^(n-2)+2^(n-3)+2^(n-4)]+……+2^1+1]
=2^{(1)[2^(n-1)-1]/(2-1)}
=2^[2^(n-1)-1]
an=2{[a(n-1)]^2}
两式相除:
a(n+1)/an=[(an)^2]/{[a(n-1)]^2}
=[an/a(n-1)]^2
={[a(n-1)/a(n-2)]^2}^2=[a(n-1)/a(n-2)]^4
={[a(n-2)/a(n-3)]^2}^4=[a(n-2)/a(n-3)]^(2^3)
……
=[a2/a1]^[2^(n-1)]
=(a2)^[2^(n-1)]
a(n+1)=an*(a2)^[2^(n-1)]
a2=2(a1)^2=2
a(n+1)=an*2^[2^(n-1)]
an=a(n-1)*2^[2^(n-2)]
……
a2=a1*2^[2^0]
叠乘:
an=a1*2^[2^(n-2)]*2^[2^(n-3)]*2^[2^(n-4)]*……*2^[2^(3-2)]*2^[2^(2-2)]
=2^[2^(n-2)+2^(n-3)+2^(n-4)]+……+2^1+1]
=2^{(1)[2^(n-1)-1]/(2-1)}
=2^[2^(n-1)-1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=1 a(n+1)=2((an)^2)即an+a1=2((an)^2),an=2((an)^2)-1,
2an-1=1,2an=2
an=1
2an-1=1,2an=2
an=1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
显然a(n)>0,
令b(n)=lg(a(n)),则
b(n+1)=2b(n)+lg2.
[b(n+1)+lg2]=2[b(n)+lg2]
b(n)+lg2 是等比数列,然后算出b(n)+lg2, b(n), a(n).
令b(n)=lg(a(n)),则
b(n+1)=2b(n)+lg2.
[b(n+1)+lg2]=2[b(n)+lg2]
b(n)+lg2 是等比数列,然后算出b(n)+lg2, b(n), a(n).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询