定积分,∫dx/1+(tanx)^√2 积分区间在[0,π/2]
展开全部
在[0,π/2]上,用换元法解:
f(sinx)dx=1/2[∫[0,π/2] f(sinx)dx+∫[0,π/2] f(cosx)dx]
∫[0,π/2][1/1+(tanx)^√2]dx
=∫[0,π/2][(cosx)^√2/[(cosx)^√2+(sinx)^√2]dx
=1/2{ ∫ [0,π/2][(cosx)^√2/[(cosx)^√2+(sinx)^√2]dx+∫[0,π/2] [(sinx)^√2/[(cosx)^√2+(sinx)^√2]dx }
=1/2∫[0,π/2] 1dx
=π/4
特别注意,根据上述表达式有,当[a,b]区间恰好为[0,1]区间时,则[0,1]区间积分表达式为:
扩展资料:
常用积分法
一、换元积分法
(1)
(2)x=ψ(t)在[α,β]上单值、可导;
(3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,
则
二、分部积分法
设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式:
参考资料来源:百度百科—定积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |