已知方程组x+4y-3z=0,4x-5y+2z=0.xyz不等于0,求x的平方+y的平方分之3x的平方+2xy+z的平方的值.
2010-08-17
展开全部
X+4Y-3Z=0 (1)
4X-5Y+2Z=0 (2)
(1)*4-(2)
16Y-12Z+5Y-2Z=0
21Y=14Z
Y:Z=2:3
y=2z/3
(1)*5+(2)*4
5X-15Z+16X+8Z=0
21X=7Z
X:Z=1:3
x=z/3
不妨设z=6a,那么x=2a,y=3a,z=6a
(3x²+2xy+z²)/(x²+y²)= (12a²+12a²+36²)/(4a²+9a²)=72/13
4X-5Y+2Z=0 (2)
(1)*4-(2)
16Y-12Z+5Y-2Z=0
21Y=14Z
Y:Z=2:3
y=2z/3
(1)*5+(2)*4
5X-15Z+16X+8Z=0
21X=7Z
X:Z=1:3
x=z/3
不妨设z=6a,那么x=2a,y=3a,z=6a
(3x²+2xy+z²)/(x²+y²)= (12a²+12a²+36²)/(4a²+9a²)=72/13
展开全部
X+4Y-3Z=0 (1)
4X-5Y+2Z=0 (2)
(1)*4-(2)
16Y-12Z+5Y-2Z=0
21Y=14Z
Y:Z=2:3
y=2z/3
(1)*5+(2)*4
5X-15Z+16X+8Z=0
21X=7Z
X:Z=1:3
x=z/3
不妨设z=6a,那么x=2a,y=3a,z=6a
(3x²+2xy+z²)/(x²+y²)= (12a²+12a²+36²)/(4a²+9a²)=72/13
4X-5Y+2Z=0 (2)
(1)*4-(2)
16Y-12Z+5Y-2Z=0
21Y=14Z
Y:Z=2:3
y=2z/3
(1)*5+(2)*4
5X-15Z+16X+8Z=0
21X=7Z
X:Z=1:3
x=z/3
不妨设z=6a,那么x=2a,y=3a,z=6a
(3x²+2xy+z²)/(x²+y²)= (12a²+12a²+36²)/(4a²+9a²)=72/13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询