高一函数 奇偶性

已知函数y=f(X)若对于任何实数xy有f(x+y)=f(x)+f(y)求证f(x)是奇函数... 已知函数y=f(X) 若对于任何实数x y有f(x+y)=f(x)+f(y) 求证 f(x)是奇函数 展开
百度网友e019944
2010-07-29 · TA获得超过2377个赞
知道小有建树答主
回答量:353
采纳率:0%
帮助的人:347万
展开全部
先令x=y=0,则f(0)=2f(0),既f(0)=0。再令y=-x,则有:f(0)=f(x)+f(-x)=0,既f(-x)=-f(x),这就是奇函数的定义,命题得证了。若问为什么先后令x=y=0,y=-x,那是因为它们是任意数,故这样设。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
L灵子轩Y
2010-07-29 · TA获得超过561个赞
知道小有建树答主
回答量:220
采纳率:0%
帮助的人:184万
展开全部
先令x=y=0。有f(x+y)=f(0+0)=f(x)+f(y)=f(0)+f(0)
即f(0)=f(0)+f(0).
所以 f(0)=0.

令x=-y
则f(x+y)=f(-y+y)=f(0),
而f(x+y)=f(x)+f(y)=f(-y)+f(y),
所以 f(0)=f(-y)+f(y),
即f(-y)=-f(y)

又因为对于任何实数x y有f(x+y)=f(x)+f(y),
所以函数定义域关于原点对称。
f(0)=0
f(-y)=-f(y)
所以f(x)为奇函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
try669
2010-07-29 · TA获得超过5076个赞
知道小有建树答主
回答量:1041
采纳率:0%
帮助的人:1915万
展开全部
在条件式
f(x+y)=f(x)+f(y)中,
取x=0得
f(y)=f(y)+f(0)
即f(0)=0
再令x=-y得
f(0)=f(-y)+f(y)

f(y)=-f(-y)
即函数f(x)是奇函数
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jackey5
2010-07-29 · TA获得超过1073个赞
知道小有建树答主
回答量:694
采纳率:0%
帮助的人:630万
展开全部
令x=y=0
f(0)=2f(0)
f(0)=0
令x=-y
f(x+y)=f(x)+f(y)
f(0)=f(x)+f(-x)=0;
f(x)关于(0,0)对称;
∴ f(x)是奇函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
飞吧小安天
2010-07-29 · TA获得超过1603个赞
知道小有建树答主
回答量:592
采纳率:0%
帮助的人:266万
展开全部

不好意思,字写得丑了。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式