设A为正定矩阵,证明伴随矩阵A*也是正定矩阵

 我来答
教育小百科达人
2019-05-30 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:465万
展开全部

这里用到A是正定矩阵的一个等价条件:A正定等价于A的特征值λ都>0。

如果A是正定。判断A的伴随也就是A*的特征值是否也都>0。

考虑Aa=λa,A*Aa=λA*a,|A|a/λ=A*a,这里可看出A*的特征值为|A|/λ。因为A正定,所以|A|>0,λ>0,那么A*的特征值=|A|/λ >0,因此A*是正定的。

这说明:正定矩阵的伴随矩阵是正定的。

现在A*是正定的,那么根据这个结论,可知道(A*)*是正定的。

扩展资料:

线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式。

根据正定矩阵的定义及性质,判别对称矩阵A的正定性有两种方法:

(1)求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。

(2)计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵不存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。

参考资料来源:百度百科--伴随矩阵

参考资料来源:百度百科--正定矩阵

许华斌2002
2017-07-12 · 知道合伙人教育行家
许华斌2002
知道合伙人教育行家
采纳数:6312 获赞数:38458
江西师范大学数学教育专业毕业,2011年江西财经大学数量经济学硕士毕业 执教12年

向TA提问 私信TA
展开全部
这里用到A是正定矩阵的一个等价条件:A正定 等价于 A的特征值λ都>0.
我们现在想知道如果A是正定,那么A的伴随是否正定呢?也就是A*的特征值是否也都>0呢?
考虑Aa=λa ,A*Aa=λA*a,|A|a/λ=A*a ,这里可看出A*的特征值为|A|/λ.因为A正定,所以|A|>0,λ>0.那么A*的特征值=|A|/λ >0.因此A*是正定的.
这说明:正定矩阵的伴随矩阵是正定的.
现在A*是正定的,那么根据这个结论,可知道(A*)*是正定的.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-10-14 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1529万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式