如果一个齐次线性方程组的系数矩阵A的秩为r,证明:方程组的任意n-r个线性无关的解向量都是它的一个
如果一个齐次线性方程组的系数矩阵A的秩为r,证明:方程组的任意n-r个线性无关的解向量都是它的一个如果一个齐次线性方程组的系数矩阵A的秩为r,证明:方程组的任意n-r个线...
如果一个齐次线性方程组的系数矩阵A的秩为r,证明:方程组的任意n-r个线性无关的解向量都是它的一个如果一个齐次线性方程组的系数矩阵A的秩为r,证明:方程组的任意n-r个线性无关的解向量都是它的一个基础解系
展开
4个回答
展开全部
我是这样理解的:
n-r=线性无关解个数
此式可以理解为以下等式:
即 未知数个数-约束个数=自由变量个数
以下说明理由:
n可以理解为未知数的个数(因为n在矩阵中相当于列的个数,而列的个数等于未知数的个数——也就是X1,X2,......,Xn的个数再加上方程组右侧的的一列,在齐次线性方程组中转化的矩阵中0的部分往往不写,因而等于未知数的个数)。
秩可以理解为约束个数,或者说有效方程的个数。为什么?因为秩是矩阵通过行变换化为行最简形时行的个数,而矩阵可以转化为方程组,矩阵的初等行变换可以理解为方程组的同等变形,而方程组作同解变形——相当于矩阵的初等行变换,可以消去一部分无效方程,剩余的就是有效方程。举个例子:由三个三元方程组成的方程组:3X1+2X2+4X3=3、X1+X2+X3=4、2X1+2X2+2X3=8;其中第二、第三个方程其实是同一个方程的变形,他们中有一个是无效方程,对求解来说是无效的。
线性无关解的个数可以理解为自由变量的个数(可以参考向量线性表示部分的例题,某几个向量定义自变量,这些自变量向量必须是线性无关的,也就是——极大线性无关组。而其余的向量均可以由这几个线性无关的自变量表示)。
综上,由于未知数个数-约束个数=自由变量个数,于是n-r=自变量个数=线性无关解个数。
水平有限,数学证明不太会,这个说明方式不知道能不能让你理解。线代加油。
n-r=线性无关解个数
此式可以理解为以下等式:
即 未知数个数-约束个数=自由变量个数
以下说明理由:
n可以理解为未知数的个数(因为n在矩阵中相当于列的个数,而列的个数等于未知数的个数——也就是X1,X2,......,Xn的个数再加上方程组右侧的的一列,在齐次线性方程组中转化的矩阵中0的部分往往不写,因而等于未知数的个数)。
秩可以理解为约束个数,或者说有效方程的个数。为什么?因为秩是矩阵通过行变换化为行最简形时行的个数,而矩阵可以转化为方程组,矩阵的初等行变换可以理解为方程组的同等变形,而方程组作同解变形——相当于矩阵的初等行变换,可以消去一部分无效方程,剩余的就是有效方程。举个例子:由三个三元方程组成的方程组:3X1+2X2+4X3=3、X1+X2+X3=4、2X1+2X2+2X3=8;其中第二、第三个方程其实是同一个方程的变形,他们中有一个是无效方程,对求解来说是无效的。
线性无关解的个数可以理解为自由变量的个数(可以参考向量线性表示部分的例题,某几个向量定义自变量,这些自变量向量必须是线性无关的,也就是——极大线性无关组。而其余的向量均可以由这几个线性无关的自变量表示)。
综上,由于未知数个数-约束个数=自由变量个数,于是n-r=自变量个数=线性无关解个数。
水平有限,数学证明不太会,这个说明方式不知道能不能让你理解。线代加油。
展开全部
秩为r,所以r个无关的x。将其他的x右移,左边变为rxr阶后,这r个无关向量组成的n阶无关向量组抽象对应r个无关向量X。X=(,,,,,,)由于这个X是由剩下的n-r个x表示出来的无关量(而且无关所以n大于等于2r),所以总体xn最多n-r个无关解就可构成他的解系。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-10-25
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询