七年级下数学问题
1/(x-1)+1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3),计算。(一定是要用简便方法的)、题目很长,我前面的没打,帮忙了。...
1/(x-1)+1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3),计算。(一定是要用简便方法的)、题目很长,我前面的没打,帮忙了。
展开
4个回答
展开全部
1/(x-1)x+1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)
=[1/(x-1) - 1/x]+[1/x - 1/(x+1)]+[1/(x+1) -1/(x+2)]+[1/(x+2) - 1/(x+3)]
=1/(x-1)-1/(x+3)=4/[(x-1)(x+3)]
=[1/(x-1) - 1/x]+[1/x - 1/(x+1)]+[1/(x+1) -1/(x+2)]+[1/(x+2) - 1/(x+3)]
=1/(x-1)-1/(x+3)=4/[(x-1)(x+3)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=[1/(x-1) - 1/x]+[1/x - 1/(x+1)]+[1/(x+1) -1/(x+2)]+[1/(x+2) - 1/(x+3)]
=1/(x-1)-1/(x+3)=4/[(x-1)(x+3)]
=1/(x-1)-1/(x+3)=4/[(x-1)(x+3)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/x(x+1)=1/x-1/(1+x)
1/(x+1)(x+2)=1/(1+x)-1/(x+2)
1/(x+2)(x+3)=1/(x+2)-1/(x+3)
1/(x-1)+1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)=
1/(x-1)+1/x-1/(1+x)+1/(1+x)-1/(x+2)+1/(x+2)-1/(x+3)=
1/(x-1)+1/x-1/(x+3)
1/(x+1)(x+2)=1/(1+x)-1/(x+2)
1/(x+2)(x+3)=1/(x+2)-1/(x+3)
1/(x-1)+1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)=
1/(x-1)+1/x-1/(1+x)+1/(1+x)-1/(x+2)+1/(x+2)-1/(x+3)=
1/(x-1)+1/x-1/(x+3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询