求f(x)=x/(x²-5x+4)在x=5处的幂级数?
2个回答
展开全部
展开成(x-5)的幂级数:
=[(x-1)十1]/[(x-1)(x-4)]
=1/(x-4)十1/ [(x-1)(x-4)]
=1/(x-4)十[1/(x-4)-1/(x-1)]/3
=(4/3)/(x-5十1)-(1/3)/(x-5十4)
=(4/3)/[1-[-(x-5)]]-(1/12)/[1-(-(x-5)/4)]
根据无穷等比数列和公式a1/(1-q)=a1十a1q十a1q²十……展开,合并。即得。
=[(x-1)十1]/[(x-1)(x-4)]
=1/(x-4)十1/ [(x-1)(x-4)]
=1/(x-4)十[1/(x-4)-1/(x-1)]/3
=(4/3)/(x-5十1)-(1/3)/(x-5十4)
=(4/3)/[1-[-(x-5)]]-(1/12)/[1-(-(x-5)/4)]
根据无穷等比数列和公式a1/(1-q)=a1十a1q十a1q²十……展开,合并。即得。
追答
=Σ(n=1,∞)(-1)^(n十1)[(4/3)-(1/12)/4^(n-1)](x-5)^(n-1)
=(1/3)Σ(n=1,∞)(-1)^(n十1)[4-1/4^n](x-5)^(n-1)
=(1/3)Σ(n=1,∞)(-1)^(n十1)[(4^(n十1)-1)/4^n](x-5)^(n-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |