已知x轴是曲线f(x)=x³+ax+b在点A(1,f(1))处的切线。
6个回答
展开全部
(1) f'(x)=3x²+a,在A处的切线是x轴,说明f'(1)=0,f(1)=0
∴f'(1)=3+a=0,∴a=-3,∴f(x)=x³-3x+b,∴f(1)=1-3+b=0,∴b=2
∴f(x)=x³-3x+2
(2) f'(x)=3x²-3=3(x+1)(x-1),令f'(x)≥0,那么x≥1,或x≤-1;令f'(x)<0,那么-1<x<1
∴f(x)在(-∞,-1]和[1,+∞)上单调递增,在(-1,1)上单调递减
∴f(x)极大值=f(-1)=-1+3+2=4;f(x)极小值=f(1)=1-3+2=0
∴f'(1)=3+a=0,∴a=-3,∴f(x)=x³-3x+b,∴f(1)=1-3+b=0,∴b=2
∴f(x)=x³-3x+2
(2) f'(x)=3x²-3=3(x+1)(x-1),令f'(x)≥0,那么x≥1,或x≤-1;令f'(x)<0,那么-1<x<1
∴f(x)在(-∞,-1]和[1,+∞)上单调递增,在(-1,1)上单调递减
∴f(x)极大值=f(-1)=-1+3+2=4;f(x)极小值=f(1)=1-3+2=0
展开全部
f(x)=x^3+ax+b
f'(x)=3x^2+a
f'(1) =0
3+a=0
a=-3
f(1) =1+a+b = -2+b
在点A(1,f(1))处的切线
y-f(1) = f'(1) (x-1)
y- (-2+b) = 0
y= -2+b
-2+b=0
b=2
ie
f(x)=x^3-3x+2
(2)
f(x)=x^3-3x+2
f'(x) = 3x^2 -3
f'(x)=0
x=1 or -1
f''(x)= 6x
f''(1)= 6>0 (min)
f''(-1) =-6 < 0 (max)
f(x)=x^3-3x+2
max f(x) = f(-1) = -1 +3 +2 = 4
min f(x) = f(1) = 1 -3 +2 = 0
f'(x)=3x^2+a
f'(1) =0
3+a=0
a=-3
f(1) =1+a+b = -2+b
在点A(1,f(1))处的切线
y-f(1) = f'(1) (x-1)
y- (-2+b) = 0
y= -2+b
-2+b=0
b=2
ie
f(x)=x^3-3x+2
(2)
f(x)=x^3-3x+2
f'(x) = 3x^2 -3
f'(x)=0
x=1 or -1
f''(x)= 6x
f''(1)= 6>0 (min)
f''(-1) =-6 < 0 (max)
f(x)=x^3-3x+2
max f(x) = f(-1) = -1 +3 +2 = 4
min f(x) = f(1) = 1 -3 +2 = 0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询