
展开全部
记y=u^3,u=cosv, v=x/2, 则v'=1/2, u'=v'cosv=1/2·cos(x/2),
y'=3u'u^2=3/2·cos(x/2)(cosv)^2=3/2·cos(x/2)(cos(x/2))^2=3/2·(cos(x/2))^3.
y'=3u'u^2=3/2·cos(x/2)(cosv)^2=3/2·cos(x/2)(cos(x/2))^2=3/2·(cos(x/2))^3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设u=cos(x/2),v=x/2
[cos(x/2)]^3} '= [ (u)^3] '=3u² v'
=3 { [cos(x/2)] ²}[cos(x/2)] '
=3 { [cos(x/2)] ^2} [-sin(x/2)] (x/2) '
=-3 { [cos(x/2)] } [2cos(x/2)sin(x/2)]/2 (1/2)
[cos(x/2)]^3} '= [ (u)^3] '=3u² v'
=3 { [cos(x/2)] ²}[cos(x/2)] '
=3 { [cos(x/2)] ^2} [-sin(x/2)] (x/2) '
=-3 { [cos(x/2)] } [2cos(x/2)sin(x/2)]/2 (1/2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解[cos(x/2)]'
=-sinx/2(x/2)'
=-1/2sin(x/2)
=-sinx/2(x/2)'
=-1/2sin(x/2)
追问
审审题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询