求二元偏导数Z=(X^2+Y^2)^COSXY
1个回答
展开全部
设u=x^2+y^2, v=cos(xy), z=u^v
əu/əx=2x, əu/əy=2y
əv/əx=-ysin(xy), əv/əy=-xsin(xy)
əz/əu=v*u^(v-1), əz/əv=u^v*lnu
əz/əx=əz/əu*əu/əx+əz/əv*əv/əx
=v*u^(v-1)*2x+u^v*lnu*[-ysin(xy)]
=2x*cos(xy)*(x^2+y^2)^[cos(xy)-1]-ysin(xy)*(x^2+y^2)^[cos(xy)]*ln(x^2+y^2)
əz/əy=əz/əu*əu/əy+əz/əv*əv/əy
=v*u^(v-1)*2y+u^v*lnu*[-xsin(xy)]
=2y*cos(xy)*(x^2+y^2)^[cos(xy)-1]-xsin(xy)*(x^2+y^2)^[cos(xy)]*ln(x^2+y^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询