球体积、表面积公式是什么?

 我来答
市晶滢钮巧
2020-04-09 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:31%
帮助的人:809万
展开全部
球体的体积和表面积公式及推导过程如下:
体积:
将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎。剩下的部分与一个半球用平面去割时处处面积相等。等出它们体积相等的结论。而那个被挖体的体积好求。就是半球体积了。V=2/3πR^3
。因此一个整球的体积为4/3πR^3
球是圆旋转形成的。圆的面积是S=πR^2,则球是它的积分,可求相应的球的体积公式是V=4/3πR^3
表面积:
让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2。求球的表面积。
以x为积分变量,积分限是[-R,R]。
在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长
所以球的表面积S=∫<-R,R>2π×y×√(1+y'^2)dx,整理一下即得到S=4πR
图为信息科技(深圳)有限公司
2021-01-25 广告
不是巧合。一个半径为(r+dr)的球体积V(r+dr) 与一个半径为r的球体积V(r) 之差等于一个半径为r、厚度为dr的球壳的体积,即 V(r+dr)-V(r) = (4(pi)r^2) * dr dV/dr = 4(pi)r^2 同理,... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
斐薄汉荷
游戏玩家

2019-02-10 · 游戏我都懂点儿,问我就对了
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:863万
展开全部
体积:
将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎。剩下的部分与一个半球用平面去割时处处面积相等。等出它们体积相等的结论。而那个被挖体的体积好求。就是半球体积了。V=2/3πR^3
。因此一个整球的体积为4/3πR^3
球是圆旋转形成的。圆的面积是S=πR^2,则球是它的积分,可求相应的球的体积公式是V=4/3πR^3
表面积:
让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2。求球的表面积。
以x为积分变量,积分限是[-R,R]。
在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长。
所以球的表面积S=∫<-R,R>2π×y×√(1+y'^2)dx,整理一下即得到S=4πR
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
果实课堂
高粉答主

2020-02-18 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:7.4万
采纳率:81%
帮助的人:3838万
展开全部

球的体积和表面积公式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式