单调递增与增函数概念是否一样?
1个回答
展开全部
其实直接从定义出发,可以知道,对于一个函数f(x),
f(x)单调递增、f(x)递增、f(x)不减、f(x)是增函数
这四件事情是完全一样的。我们统一称之为单调递增。
严格递增,也就是严格单调递增,的定义为,对任意x1<x2,有
f(x1)<f(x2)
而单调递增的定义为,对任意x1<x2,有
f(x1)<=f(x2)
就差在一个等号。
用拉格朗日中值定理,可以证明,对于f(x)
x∈R来说
若f'(x)>0恒成立,那么f(x)是严格单调递增的。
若f'(x)>=0恒成立,那么f(x)是单调递增的。
f'(x)=0是f'(x)>=0的特殊情形,所以当然也是单调递增的。
所以,就算一个函数是常数,我们也可以说它是单调递增的。(当然它也是单调递减的,这个情形比较特殊)
f(x)单调递增、f(x)递增、f(x)不减、f(x)是增函数
这四件事情是完全一样的。我们统一称之为单调递增。
严格递增,也就是严格单调递增,的定义为,对任意x1<x2,有
f(x1)<f(x2)
而单调递增的定义为,对任意x1<x2,有
f(x1)<=f(x2)
就差在一个等号。
用拉格朗日中值定理,可以证明,对于f(x)
x∈R来说
若f'(x)>0恒成立,那么f(x)是严格单调递增的。
若f'(x)>=0恒成立,那么f(x)是单调递增的。
f'(x)=0是f'(x)>=0的特殊情形,所以当然也是单调递增的。
所以,就算一个函数是常数,我们也可以说它是单调递增的。(当然它也是单调递减的,这个情形比较特殊)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询